Biosynthesis of the Unique Wall Teichoic Acid of Staphylococcus aureus Lineage ST395

نویسندگان

  • Volker Winstel
  • Patricia Sanchez-Carballo
  • Otto Holst
  • Guoqing Xia
  • Andreas Peschel
چکیده

ABSTRACT The major clonal lineages of the human pathogen Staphylococcus aureus produce cell wall-anchored anionic poly-ribitol-phosphate (RboP) wall teichoic acids (WTA) substituted with d-Alanine and N-acetyl-d-glucosamine. The phylogenetically isolated S. aureus ST395 lineage has recently been found to produce a unique poly-glycerol-phosphate (GroP) WTA glycosylated with N-acetyl-d-galactosamine (GalNAc). ST395 clones bear putative WTA biosynthesis genes on a novel genetic element probably acquired from coagulase-negative staphylococci (CoNS). We elucidated the ST395 WTA biosynthesis pathway and identified three novel WTA biosynthetic genes, including those encoding an α-O-GalNAc transferase TagN, a nucleotide sugar epimerase TagV probably required for generation of the activated sugar donor substrate for TagN, and an unusually short GroP WTA polymerase TagF. By using a panel of mutants derived from ST395, the GalNAc residues carried by GroP WTA were found to be required for infection by the ST395-specific bacteriophage Φ187 and to play a crucial role in horizontal gene transfer of S. aureus pathogenicity islands (SaPIs). Notably, ectopic expression of ST395 WTA biosynthesis genes rendered normal S. aureus susceptible to Φ187 and enabled Φ187-mediated SaPI transfer from ST395 to regular S. aureus. We provide evidence that exchange of WTA genes and their combination in variable, mosaic-like gene clusters have shaped the evolution of staphylococci and their capacities to undergo horizontal gene transfer events. IMPORTANCE The structural highly diverse wall teichoic acids (WTA) are cell wall-anchored glycopolymers produced by most Gram-positive bacteria. While most of the dominant Staphylococcus aureus lineages produce poly-ribitol-phosphate WTA, the recently described ST395 lineage produces a distinct poly-glycerol-phosphate WTA type resembling the WTA backbone of coagulase-negative staphylococci (CoNS). Here, we analyzed the ST395 WTA biosynthesis pathway and found new types of WTA biosynthesis genes along with an evolutionary link between ST395 and CoNS, from which the ST395 WTA genes probably originate. The elucidation of ST395 WTA biosynthesis will help to understand how Gram-positive bacteria produce highly variable WTA types and elucidate functional consequences of WTA variation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Wall teichoic acid structure governs horizontal gene transfer between major bacterial pathogens

Mobile genetic elements (MGEs) encoding virulence and resistance genes are widespread in bacterial pathogens, but it has remained unclear how they occasionally jump to new host species. Staphylococcus aureus clones exchange MGEs such as S. aureus pathogenicity islands (SaPIs) with high frequency via helper phages. Here we report that the S. aureus ST395 lineage is refractory to horizontal gene ...

متن کامل

Late-stage polyribitol phosphate wall teichoic acid biosynthesis in Staphylococcus aureus.

Wall teichoic acids are cell wall polymers that maintain the integrity of the cellular envelope and contribute to the virulence of Staphylococcus aureus. Despite the central role of wall teichoic acid in S. aureus virulence, details concerning the biosynthetic pathway of the predominant wall teichoic acid polymer are lacking, and workers have relied on a presumed similarity to the putative poly...

متن کامل

Wall teichoic acid protects Staphylococcus aureus from inhibition by Congo red and other dyes.

OBJECTIVES Polyanionic polymers, including lipoteichoic acid and wall teichoic acid, are important determinants of the charged character of the staphylococcal cell wall. This study was designed to investigate the extent to which teichoic acid contributes to protection from anionic azo dyes and to identify barriers to drug penetration for development of new antibiotics for multidrug-resistant St...

متن کامل

Anti-infectious agents against MRSA.

Clinically useful antibiotics, β-lactams and vancomycin, are known to inhibit bacterial cell wall peptidoglycan synthesis. Methicillin-resistant Staphylococcus aureus (MRSA) has a unique cell wall structure consisting of peptidoglycan and wall teichoic acid. In recent years, new anti-infectious agents (spirohexaline, tripropeptin C, DMPI, CDFI, cyslabdan, 1835F03, and BPH-652) targeting MRSA ce...

متن کامل

Unique teichoic acid isolated from the cell walls of a strain of Staphylococcus aureus.

Teichoic acid antigen extracted from cell walls of a strain of Staphylococcus aureus has been shown to have the unique structure of glycerolphosphate, with N-acetyl-d-galactosamine as the immunodominant substituent.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2014